{ "cells": [ { "cell_type": "code", "execution_count": 19, "metadata": { "tags": [ "remove_cell" ] }, "outputs": [], "source": [ "from datascience import *\n", "\n", "import sympy\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import matplotlib.patches as patches\n", "plt.style.use('seaborn-muted')\n", "mpl.rcParams['figure.dpi'] = 200\n", "%matplotlib inline\n", "\n", "from IPython.display import display\n", "import numpy as np\n", "import pandas as pd\n", "solve = lambda x,y: sympy.solve(x-y)[0] if len(sympy.solve(x-y))==1 else \"Not Single Solution\"\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "4f243c01-873e-4eb5-bdfe-451f2a06dfea" }, "source": [ "# Market Equilibria\n", "\n", "We will now explore the relationship between price and quantity of oranges produced between 1924 and 1938. Since the data {cite}`01demand-fruits` is from the 1920s and 1930s, it is important to remember that the prices are much lower than what they would be today because of inflation, competition, innovations, and other factors. For example, in 1924, a ton of oranges would have costed \\$6.63; that same amount in 2019 is \\$100.78. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "cell_id": "5a6c6746-bad6-466e-8c18-bc16f5fad344" }, "outputs": [ { "data": { "text/html": [ "
Year | Pear Price | Pear Unloads (Tons) | Plum Price | Plum Unloads | Peach Price | Peach Unloads | Orange Price | Orange Unloads | NY Factory Wages | \n", "
---|---|---|---|---|---|---|---|---|---|
1924 | 8.04 | 18489 | 8.86 | 6582 | 4.96 | 41880 | 6.63 | 21258 | 27.22 | \n", "
1925 | 5.67 | 21919 | 7.27 | 5526 | 4.87 | 38772 | 9.19 | 15426 | 28.03 | \n", "
1926 | 5.44 | 29328 | 6.68 | 5742 | 3.35 | 46516 | 7.2 | 24762 | 28.89 | \n", "
1927 | 7.15 | 17082 | 8.09 | 5758 | 5.7 | 32500 | 8.63 | 22766 | 29.14 | \n", "
1928 | 5.81 | 20708 | 7.41 | 6000 | 4.13 | 46820 | 10.71 | 18766 | 29.34 | \n", "
1929 | 7.6 | 13071 | 10.86 | 3504 | 6.7 | 36990 | 6.36 | 35702 | 29.97 | \n", "
1930 | 5.06 | 22068 | 6.23 | 7998 | 6.35 | 29680 | 10.5 | 23718 | 28.68 | \n", "
1931 | 5.4 | 19255 | 6.86 | 5638 | 3.91 | 50940 | 5.81 | 39263 | 26.35 | \n", "
1932 | 4.06 | 17293 | 6.09 | 7364 | 4.57 | 27642 | 4.71 | 38553 | 21.98 | \n", "
1933 | 4.78 | 11063 | 5.86 | 8136 | 3.57 | 35560 | 4.6 | 36540 | 22.26 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Pear Price | Pear Unloads (Tons) | Plum Price | Plum Unloads | Peach Price | Peach Unloads | Orange Price | Orange Unloads | NY Factory Wages\n", "1924 | 8.04 | 18489 | 8.86 | 6582 | 4.96 | 41880 | 6.63 | 21258 | 27.22\n", "1925 | 5.67 | 21919 | 7.27 | 5526 | 4.87 | 38772 | 9.19 | 15426 | 28.03\n", "1926 | 5.44 | 29328 | 6.68 | 5742 | 3.35 | 46516 | 7.2 | 24762 | 28.89\n", "1927 | 7.15 | 17082 | 8.09 | 5758 | 5.7 | 32500 | 8.63 | 22766 | 29.14\n", "1928 | 5.81 | 20708 | 7.41 | 6000 | 4.13 | 46820 | 10.71 | 18766 | 29.34\n", "1929 | 7.6 | 13071 | 10.86 | 3504 | 6.7 | 36990 | 6.36 | 35702 | 29.97\n", "1930 | 5.06 | 22068 | 6.23 | 7998 | 6.35 | 29680 | 10.5 | 23718 | 28.68\n", "1931 | 5.4 | 19255 | 6.86 | 5638 | 3.91 | 50940 | 5.81 | 39263 | 26.35\n", "1932 | 4.06 | 17293 | 6.09 | 7364 | 4.57 | 27642 | 4.71 | 38553 | 21.98\n", "1933 | 4.78 | 11063 | 5.86 | 8136 | 3.57 | 35560 | 4.6 | 36540 | 22.26\n", "... (5 rows omitted)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fruitprice = Table.read_table('fruitprice.csv')\n", "fruitprice" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Finding the Equilibrium\n", "\n", "An important concept in econmics is the market equilibrium. This is the point at which the demand and supply curves meet and represents the \"optimal\" level of production and price in that market." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{admonition} Definition\n", "The **market equilibrium** ...\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's walk through how to the market equilibrium using the market for oranges as an example." ] }, { "cell_type": "markdown", "metadata": { "cell_id": "61b55ebf-36a4-4ce1-89b7-4b860da25de4" }, "source": [ "### Data Preprocessing\n", "\n", "Because we are only examining the relationship between prices and quantity for oranges, we can create a new table with the relevant columns: `Year`, `Orange Price`, and `Orange Unloads`. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "cell_id": "b75d49b7-7c34-4c8a-a844-e16f26940df7" }, "outputs": [ { "data": { "text/html": [ "Year | Orange Price | Orange Unloads | \n", "
---|---|---|
1924 | 6.63 | 21258 | \n", "
1925 | 9.19 | 15426 | \n", "
1926 | 7.2 | 24762 | \n", "
1927 | 8.63 | 22766 | \n", "
1928 | 10.71 | 18766 | \n", "
1929 | 6.36 | 35702 | \n", "
1930 | 10.5 | 23718 | \n", "
1931 | 5.81 | 39263 | \n", "
1932 | 4.71 | 38553 | \n", "
1933 | 4.6 | 36540 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Orange Price | Orange Unloads\n", "1924 | 6.63 | 21258\n", "1925 | 9.19 | 15426\n", "1926 | 7.2 | 24762\n", "1927 | 8.63 | 22766\n", "1928 | 10.71 | 18766\n", "1929 | 6.36 | 35702\n", "1930 | 10.5 | 23718\n", "1931 | 5.81 | 39263\n", "1932 | 4.71 | 38553\n", "1933 | 4.6 | 36540\n", "... (5 rows omitted)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oranges_raw = fruitprice.select(\"Year\", \"Orange Price\", \"Orange Unloads\")\n", "oranges_raw" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "8c900ffc-173d-4c91-97c9-e1d8924c8d67" }, "source": [ "Next, we will rename our columns. In this case, let's rename `Orange Unloads` to `Quantity` and `Orange Price` to `Price` for brevity and understandability. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "cell_id": "254b8839-cf4f-460b-a597-c267ad6ebb84" }, "outputs": [ { "data": { "text/html": [ "Year | Price | Quantity | \n", "
---|---|---|
1924 | 6.63 | 21258 | \n", "
1925 | 9.19 | 15426 | \n", "
1926 | 7.2 | 24762 | \n", "
1927 | 8.63 | 22766 | \n", "
1928 | 10.71 | 18766 | \n", "
1929 | 6.36 | 35702 | \n", "
1930 | 10.5 | 23718 | \n", "
1931 | 5.81 | 39263 | \n", "
1932 | 4.71 | 38553 | \n", "
1933 | 4.6 | 36540 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Price | Quantity\n", "1924 | 6.63 | 21258\n", "1925 | 9.19 | 15426\n", "1926 | 7.2 | 24762\n", "1927 | 8.63 | 22766\n", "1928 | 10.71 | 18766\n", "1929 | 6.36 | 35702\n", "1930 | 10.5 | 23718\n", "1931 | 5.81 | 39263\n", "1932 | 4.71 | 38553\n", "1933 | 4.6 | 36540\n", "... (5 rows omitted)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oranges = oranges_raw.relabel(\"Orange Unloads\", \"Quantity\").relabel(\"Orange Price\", \"Price\")\n", "oranges" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "d3a20db0-45a5-4ca0-8edf-ae8fe730017c" }, "source": [ "### Visualize the Relationship\n", "\n", "To construct the demand curve, let's first see what the relationship between price and quantity is. We would expect to see a downward-sloping line between price and quantity; if a product's price increases, consumers will purchase less, and if a product's price decreases, then consumers will purchase more. \n", "\n", "To find this, we will create a scatterplot and draw a regression line (by setting `fit_line = True` in the `oranges.scatter` scall) between the points. Regression lines are helpful because they consolidate all the datapoints into a single line, helping us better understand the relationship between the two variables. " ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "cell_id": "b7a2e982-d79e-4094-a295-d8edea5e3c12" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAHACAYAAAA7jMYcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gU5d7G8e8vjVAkdGwo2NuxRlBU7IqiBBA9YkcQlNAVpClFem9BQBAUEFSKQVGPHY4iYLB3VBRRNAgSpCUhed4/dvDkXRNIIMnsbu7Pde2V7LOTnXsnm9w7ZXfMOYeIiEgki/I7gIiISElT2YmISMRT2YmISMRT2YmISMRT2YmISMRT2YmISMRT2cn/Y2b3mJnLc9lpZj+a2RIzu8XMzO+MJcnM3jGzdwo5bQ0zG2ZmX3jLaZeZfWZmw83siBKOWuzM7F4zW2dmWWa2rRTmd7KZPWVmv3jz/MXM5pjZySU9byl7YvwOICHrZmAjUA44BmgCzAfamdmNzrndfobzm5mdBrwGGDARSPNuOgdoD5wMNPcnXdGZ2ZHAdGAe0BrYU8LzuwpIBdYBfYD1QF2gK/ChmSU5594oyQxStpjeVC55mdk9wCzgROfcd0G33QQ8D6Q45zr5EK/E7Vurc85dtp9pYoDPgFigoXMuPZ/br3POvVgMeco55zIP9X4KMZ9LgXeAK51zbxXD/cUCe10+/2DMrDrwDfAtcIVzbk+e2+KBt4CTgJOdc1v2M49SWTYSGbQZUwrNObeIwKvx+8yswr5xM6tgZiPMbL23OWq9mfU1s6g801zmbRZtZmbTzGyrmW0zs/FmFm1m55vZu97mwC/M7Nq88/ZuX2hmG81st5l9Y2ZDzax80HTvePdzlZl96G1a/NzM/rGWZWa3mtnXZpbpzbOwa2LNgVOAXsFF5y2nvfuKzszqeo/7nqB571sel+WT/UYz+8jMMoEOXrbF+eSv791H8zxjZ5nZUjP701tO75nZJft7MGY2m0DRAbzp3eds77ZYMxvsbcrO8r4O9sps38/ve4wdzGykmf0KZAJVCphlW6A60CVv0XnLbg+Btbvq3nT7XTbebR3N7P08z6lVZtYk6DHuy9jezAaZ2SZv2hfN7OigaSuY2eNmtsXMdlhgE37DAn6Pl5rZm2b2l/fc/Y+ZnRE0zbVmttLMMrz7+8bMHi3wFyIlwzmniy5/X4B7AAecUMDt93m3N/KuxwD/BbYQ+Cd1JdCXwGawMXl+7jLv534ExgJXA495Y5OAr4B7gWu9+9sJ1Mjz8zcB/YAbgEsJ/KP7DVgQlO8dYBPwBXAH0Bh4Hdib9zEBVwG5wIsENtHeA2zwfvadAyyj6d79VSjE8qzrPcZ7gsb3LY/LgrKnE9ikd683zZlAL295Vg26j0neco/zrp/rLbd3gZbA9cBSAsVz3n4yHg908vJ0AC4Ajvdue8Z7rIOAa4ABQDbwTD6P8RfgBe93lASUL2B+rwGbDrDcfgP+c6Bl4902GmhD4Ll3LTDZy9M4n4w/eo/pOuBu4I/g3zcw11tmvQk8T4d78/1/v0fvebOXwAvAJO+yEvgTqONNc5x3X/MIPBevILCZe4Tff+tl7eJ7AF1C68KBy+5a7/Z/e9fvJE/55ZmuL5AF1PKuX+ZN92TQdB964xfnGTvTG7u7gAxGoGTvIFBY1fPc9o73z/jEPGO1gBygT56x94Avgag8Yxd4833nAMvolQP9s84z7b5/svcEje9bHpcFZc8Fzg6ato6Xv32esVhgMzAlz9ibBF40xOUZi/bGXjhAzqvyyXOGNzYgaNp+3viZQY/xQ7xdIweY11fA+weYZhXw5YGWTT4/F+U9N14DUvP5PbwTNP1D3viR3vWTvfn0DJpuYvDvEfgOeDNousoECnS8d72l93OVi+PvU5eDv2gzphTVvqMx9+2LaQz8BKw0s5h9FwL/bGIJFEherwRd/xrY6Zx7N2gMAv/kAzM1q+xtKv2ewCvlbGCOl+fEoPtc55xbt++KC2xqTCdwoA1mFg2cDyx0zuXmmW4VgVf+fvrROfdx3gHn3M8E/tnfmWe4MVCDwDLA25x7KYF9qrl5fg8GvAE0Oogs+35mbtD4vuuXBo2/4Lz/8CXkH8sGwMzOM7OXzOx3Amta2QTWyPI7qvPloOufeV+P8b42ILDMng+abmHQPE8ksEY8L+h5vwt4n/8tu4+9PAvMrKWZ1SrE45QSoLKTotpXQJu8r7WAYwn8Qee9rPFurx70838GXc8C/t9h7s65LO/b+DzDs4D7CbzCvppAWSXnMx3A1nxyZ+aZrgaBIv49n+nyGwv2M1DT8uy3LEabChifA1xkZvW863cC3znn3veuVyOwFvcI//xddASqWp59qIVUrYBMvwXdfqDswTYSWNPan7oElvN+79/M6hBYo61GYFNsQwLPjVf55/MC/vnc2HeAy75p971lJHhfbPDzYl9pzeSfy/sGvOe9CxzkdS2B/7VzgN+8fYrBLxSkhOmtB1JUTQjsP1rrXd9CYH/GLQVM/+OhztACR+glEdicNiHP+L8O8i7/IPBPqXY+t9UmsKa6P28Q2Hd5HbDoANPuOwAjLmg8+EXAPgWtGS0CUoA7zGwicCMwLM/t2whsfksBns73jvOsxRbSvmI4HPg+z/jhQbf/PYtC3u+bwFVmdr5z7oPgG82sPoHfQ/BRofndf2MgAbjFObcxz30c7AuRvC/i1ucZD36u7DtKtDeB50OwfS/YcM69DbxtZuWAiwjs/1xmZnWdc38cZE4pIq3ZSaFZ4K0HTYGpzrld3vCrBNb2djjn0vK5FMcfczkCay3ZQeP3HMydOedygA+Alvb/jxhtwIHXOAAWEzh0foSZ1Qy+0dukte9owN8JrD2cETRZE4rAOfcXgYM/7iCwH6gceTYvOud2Ejiw5yzgw/x+F0WZn2eF9/XWoPHbva/vHMR9AswgsIY/wXsh8zfv+ngCRTqjEPe1r9T+fm6Y2UkESuVgrCFQqjcHjQdf/4bAC7nTC3jefxp8x865TBd4W8dIoCJQL3gaKTlas5OCnG1mNQiskRxDYNPMzQSObOydZ7p9b0J+08zGAJ94P3M8gWJslqcYD4pzLsPMVgEPmtkmAmtm9wJHHcLd9iewX/EFM5sG1AQG8r9NdPvLs9fMWhBYFh+b2QT+96bys4B2BPY7LnPOOTN7FmhjZt8S+CfZhMABKkU1B7jNy/mec+6HoNu7Eyio/5jZTAJrKTUIHKUZ7ZzrVZSZOec+N7P5wABvf9RK4EICm0rnO+c+2+8dFHy/f5hZK2AJ8L6ZjeN/byrvRuBtHc3dft5jl8cbBPbTPe09/44gsHw2cBAv5p1zX5vZM8Bj3guhtQSOoLzRmyTXm86ZWTKQamZxwHMEnpe1CWxK3eCcG2tm9xPYf/cygc2yNQj8/fwKfF7UfHII/D5CRpfQuvC/ozH3XXYT2Ky3hEDZ/eNoOwL7OwYQ+AefSeBV+QfeWIw3zWXe/V0V9LOzgY353KcDBue5XpfAwS1/EdifMplAaeR3ROO7+dzfj8DsoLFWBMonk8BbFZp7P/9OIZdVDQKHpX9J4MCE3cCnwBC8o1C96aoQKKo/vGUztSjZ89weTaDAHNCugGlOBRZ4yyiTwP6xpcD1B3gs/zga0xuPAwZ7z4Fs7+tgIDbod+OAtkV8rp3qLZdfCWz220TgxdNp+Uxb4LIhsAn9awKbjL8gsCY6m8ABLfvNSP5HxVYAHvd+Vzu85bfv95UU9PMXAi8RWFPd4z3PFgAX5rk9lUDRZXqP8XkCb5j3/e+9LF30CSoiIgdgZg8R2PxY1zm3we88UnTajCkikoeZ3UBgH+vHBDZbXkLg/XjPqejCl8pOROT/+wtoRuCTayoS+GSYiQT280qYKtXNmGb2JIEDHdKdc2d4YzcT2LdzKlDfHdxRYyIiIgUq7bcezCbwvpi8Pgda8L/DnEVERIpVqW7GdM6tMLO6QWNfAVgRzwlao0YNV7du3QNOJyIiZcfatWv/cM794/2vYbvPrm7duqSlaYuniIj8j5nl+wlIYfUJKmbWzszSzCxt8+bNfscREZEwEVZl55yb7pxLdM4l1qz5j7VUERGRfIVV2YmIiByMUi0773P23gdONrONZtbGzJqb2UYCH6uzzMz+U5qZREQk8pX20ZitCrhpSWnmEBGRskWbMUVEJOKp7EREJOKp7EREJOKp7EREJOKp7EREJOKp7EREJOKp7EREJOKp7EREJOKp7MJYxvYdrFu/kYztO/yOIiIS0sL2FD9l3fJVn9B31ExycnKJjo5iaM+2NGpwpt+xRERCktbswlDG9h30HTWTcnGx1KiWQLm4WPqMnKE1PBGRAqjswlD6lm3k5ORSoXw8ABXKx7M3J5f0Ldt8TiYiEppUdmGoVvUqREdHsWv3HgB27d5DTHQUtapX8TmZiEhoUtmFoYTKlRjasy2ZWdls3ppBZlY2Q3u2JaFyJb+jiYiEJB2gEqYaNTiTZbOGkr5lG7WqV1HRiYjsh8oujCVUrqSSExEpBG3GFBGRiKeyExGRiKeyExGRiKeyExGRiKeyk4ikzw0Vkbx0NKZEHH1uqIgE05qdRBR9bqiI5EdlJxFFnxsqIvlR2UlE0eeGikh+VHYSUfS5oSKSHx2gIhFHnxsqIsFUdhKR9LmhIpKXNmOKiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEU9mJiEjEK9WyM7MnzSzdzD7PM1bNzF43s3Xe16qlmUlERCJfaa/ZzQYaB431At50zp0IvOldLxV79+aU1qxERMRHpVp2zrkVwNag4STgKe/7p4BmpZFlW8YOEm98gKcXvVYasxMRER+Fwj672s65Td73vwG1C5rQzNqZWZqZpW3evPmQZupwVK9Smbu7j6DPyBnk5uYe0v2JiEjoCoWy+5tzzgFuP7dPd84lOucSa9aseUjzqppwGK8+PZx2tzVhWMp8Wt4/kJ27dh/SfYqISGgKhbL73cyOAPC+ppfWjGNjY5g6tBvjHu1A6usruaRlV3757dDWGEVEJPSEQtktBe72vr8bSC3NmZsZXdvcxIszB/PdT79y/o3JpH36TWlGEBGRElbabz2YD7wPnGxmG82sDTAcuNrM1gFXeddL3fVXNGDl4onExcXQ6OZuLFy23I8YIiJSAiywmyz8JCYmurS0tGK/3/Q//qR5u/6sXPsFjz3Ymr6dbsfMin0+IiJS/MxsrXMuMXg8FDZjhpRaNary5jOjub3ZlTwyZhZ3dh3Gnj1ZfscSEZFDoLLLR3x8HHPG92ZIj3uZ98KbXNHqQX7fHPz2QBERCRcquwKYGX063s7zUx7l4y+/p35SMp99/YPfsURE5CCo7A6gZZNLWfH8OPbuzaFhi84se3OV35FERKSIVHaFkHjmyaxZmsJJ9Y6madtHGDdjIeF6YI+ISFmksiukow6vyYrnx9Hsmovo/tjjtO89juzsvX7HEhGRQlDZFUHFCuV5/vFH6ZN8G0/MX8a1dz7M1m3b/Y4lIiIHoLIroqioKIb0bMPT43rx3tovuKBZR7794We/Y4mIyH6o7A7SnS2u5q1nRvNnxg4uaNaJt977yO9IIiJSAJXdIbjo/DNYk5rCkbWrc+1dDzP9mZf8jiQiIvlQ2R2iesccwcrFE7n64vNo33sc3QZNISdHZ0AXEQklKrtiUPmwiiydOZgu97Zg/MxFNG3zCNv/2ul3LBER8ajsiklMTDTj+yczdWhX/rPiAy66qQs//vyb37FERASVXbFrf/uNvPr0cDZu2kz9pGRWpn3hdyQRkTJPZVcCrrr4PFa9MJmEwypyeasHmbv4db8jiYiUaSq7EnLy8XVY9cIkGp57Gnd2G07fkTPJzc31O5aISJmksitB1asm8J85I2h76/UMTXmGWzoMYtfuPX7HEhEpc1R2JSwuLpbpw7szpt/9LH71XRrd3I1fftvsdywRkTJFZVcKzIzu993M0pmP8c0PP1O/aTJrP/vW71giImWGyq4U3XDlhby3aAIxMdFc0rIri1/5r9+RRETKBJVdKTvz1ONZk5rCWacex033D2Do5Hk6N56ISAlT2fmgds1qvL1gLLclXUnfUU9yd/cRZGZm+R1LRCRixfgdoKyKj49j7oTenHrCMTwyZhbf//QrS6YPpFaNqn5HExGJOFqz85GZ0a/zHTyb8ggffr6OBkkd+fyb9X7HEhGJOCq7EHDLDZex4vlxZGZl07BFZ155e7XfkUREIorKLkScf9YprFmawvHHHMkN9/ZjwpOLdOCKiEgxUdmFkKOPqMm7i8bT9OoL6TpwCg/0HU929l6/Y4mIhD2VXYipWKE8i6YOoFeHVkyb9xLX3d2bPzP+8juWiEhYU9mFoKioKIY93JbZY3qyYs2nXNCsI+vWb/Q7lohI2FLZhbC7W17Lm8+MYsuf22mQ1JG3V37kdyQRkbCksgtxl9Q/kzVLUzi8ZlWuufNhZsxf5nckEZGwo7ILA8cdcyTvL5nElRedy329xvLgY4+Tk5PjdywRkbChsgsTCZUr8dKTQ+h0T3PGzlhIs/se5a8du/yOJSISFlR2YSQmJpqJAzuS8lhnXnlnDRfd1JmfNv7udywRkZCnsgtDHe5K4pWnhrHh13TqJ3Xg/bVf+B1JRCSkqezC1NWXJLJqyWQOq1iBy1s9yLwlb/gdSUQkZKnswtgpJxzD6tTJNDj7VO7oOoxHx8wiNzfX71giIiGnTJddxvYdrFu/kYztO/yOctCqV03g9bkjufeWxjw2cS63dhzMrt17/I4lIhJSyuz57Jav+oS+o2aSk5NLdHQUQ3u2pVGDM/2OdVDi4mKZMfIhTj3hWHoOm876n39j6YzHOKJ2db+jiYiEhDK5ZpexfQd9R82kXFwsNaolUC4ulj4jZ4T1Gp6Z8VD7W3jhiUF89d1PnN+0Ax99vs7vWCIiIaFMll36lm3k5ORSoXw8ABXKx7M3J5f0Ldt8Tnboml7dkPcWTSQqKoqLW3Zlyavv+h1JRMR3ZbLsalWvQnR01N/7tnbt3kNMdBS1qlfxOVnxOOu041mTmsK/TqlHi/b9GfH4fJ0bT0TKtDJZdgmVKzG0Z1sys7LZvDWDzKxshvZsS0LlSn5HKzaH16rG2wvGcGvTy+k1fAatHxpJZmaW37FERHxh4fqKPzEx0aWlpR3SfWRs30H6lm3Uql4looouL+ccgybMYcC4p7j4/DNYPG0gNSNkDVZEJJiZrXXOJQaPl8k1u30SKlfixHpHR2zRQeDAlf5d72LB5H6kffotDZI68uW3P/odS0SkVJXpsitL/n3j5bzz7Fh27dnDhS068+o7a/yOJCJSalR2ZUiDc07lg6VTqFfncJq07sukWUt04IqIlAkhU3Zm1sXMPjezL8ysq995IlWdI2vx7sIJ3HDlBXQeMJnkfhPJzt7rdywRkRIVEmVnZmcA9wH1gbOAG8zsBH9TRa5KFcuzeNoAerS/hcfnLuX6e3qzLSN831AvInIgIVF2wKnAaufcLufcXmA50MLnTBEtOjqakX3a8+SoHixf/SkXNO/Idz/+4ncsEZESESpl9zlwiZlVN7MKwPVAHZ8zlQmtb2nMG/NGsXnLNhokJbN81Sd+RxIRKXYhUXbOua+AEcBrwKvAx0BO8HRm1s7M0swsbfPmzaWcMnI1anAma5ZOoVb1qlx9R0+efPYVvyOJiBSrkCg7AOfcTOfcec65RsCfwLf5TDPdOZfonEusWbNm6YeMYMcfeyTvL5nE5ReeTZueo+kxZBo5Of94vSEiEpZCpuzMrJb39RgC++ue8TdR2VMloRLLZg0l+a4kRk9/jhbtB7Bj526/Y4mIHLKQKTtgkZl9CbwIJDvnwv8UBGEoJiaayY91ZvKgTix7axUX3dSZDb/87ncsEZFDEjJl55y7xDl3mnPuLOfcm37nKeuS727Gy7OH8ePG36mflMzqj77yO5KIyEELmbKT0HNNo0TeXzyRiuXjufTf3Viw9C2/I4mIHBSVnezXaSfVZXVqCvXPOoVWnYbQf+xsfcSYiIQdlZ0cUI1qCbw+dyT33HwtgybMoVWnwezek+l3LBGRQlPZSaGUKxfHk6N6MKL3fTz30nIu+3d3Nv2+xe9YIiKForKTQjMzet5/K4unDeDzb36kflIyH3/xnd+xREQOSGUnRdbs2ot5d+F4AC5u2YXU197zOZGIyP6p7OSgnHPGiaxJTeG0E4+lebv+jJy6QAeuiEjIUtnJQTuidnWWPzeOm5tcysPDnqBNj9FkZWX7HUtE5B9i/A4g4a18fDnmT+rLKcfXYdCEOXy/4VcWTR1AjWoJfkcTEfmb1uzkkEVFRTGw+z08M7Evqz/+igZJyXy17ie/Y4mI/E1lJ8WmVdIVvLNgLDt37+HCFp14bUWa35FERACVnRSzC849jTWpKRx7VG2uv6c3KU+94HckERGVnRS/Y46qzbsLJ3DdZfXp+OgkOj4ykb17D+7ceBnbd7Bu/UYytu8o5pQiUpboABUpEYdVqsALTwyi1/AZjJ7+HOt+/IXnUh4hoXKlQt/H8lWf0HfUTHJycomOjmJoz7Y0anBmCaYWkUilNTspMdHR0Yzq254ZIx7krZUfcWHzTnz/06+F+tmM7TvoO2om5eJiqVEtgXJxsfQZOUNreCJyUFR2UuLa3Ho9r88dye9//EmDpGRWrP70gD+TvmUbOTm5VCgfD0CF8vHszcklfYvO6SsiRaeyk1Jx2YVnszo1hRrVErjq9h7Mfv7V/U5fq3oVoqOj2LV7DwC7du8hJjqKWtWrlEZcEYkwKjspNSfUPYr3l0zi0gZn0vqhUTw8bDq5ubn5TptQuRJDe7YlMyubzVszyMzKZmjPtkXa5yciso+F6+cZJiYmurQ0vY8rHGVn76XLgBQen7uUpGsaMnd8HypVLJ/vtBnbd5C+ZRu1qldR0YnIAZnZWudcYvC41uyk1MXGxpAyuDMTB3TkxTdWcXHLLvz8a3q+0yZUrsSJ9Y5W0YnIIVHZiS/MjE6tm/PSk4P5YcMm6jdNZs3HX/sdS0QilMpOfHXd5Q14f8kkyseX49JbuvHsi2/7HUlEIpDKTnx3+kl1WZ06mfP+dRK3dhzMoAlP69x4IlKsVHYSEmpWr8Kbz4zirpuupv/Yp7i981B278n0O5aIRAiVnYSMcuXimD3mYYY93Jb5S9/i8lsf5Lf0rX7HEpEIoLKTkGJm9OrQisXTBvLZ1+upn5TMp19973csEQlzKjsJSc0bX8x/nx9Hbm4uDVt05sU3VvodSUTCmMpOQta5/zqJNUtTOPWEY0lq+yhjpj+nA1dE5KCo7CSkHVm7BsufG8tN113CQ0Omcd/DY8jKyvY7loiEGZWdhLwK5eN5NuUR+nW6g5nPvsI1dz7Mlj8z/I4lImFEZSdhISoqisceas3c8b1Z9dGXNEjqyNffbfA7loiECZWdhJXbm1/F2/PH8NfOXVzQvCNvvLvW70giEgZUdhJ2LjzvdNakTqHOEbVofFcvHp+z1O9IIhLiVHYSlo49ujYrF0+k8aXn06HfBDr3n8zevTl+xxKREKWyk7B1WKUKpM54jG5tbmLS7CXceG9fMrbv8DuWiIQglZ2EtejoaMY+2oHpw7vzxnsf0rBFZ37Y8KvfsUQkxKjsJCLc16oJr80Zwab0rTRI6si7H3zmdyQRCSEqO4kYlzc8h1UvTKJalcO48rYePL3oNb8jiUiIUNlJRDnpuDqsemEyFyeewd3dR9B7xAxyc3P9jiUiPlPZScSpmnAYrz49nHa3NWH4lPm0vH8gO3ft9juWiPhIZScRKTY2hqlDuzHu0Q6kvr6SS1p2ZeOmzX7HEhGfqOwkYpkZXdvcxIszB/PdT79Sv2kyaZ9+43csEfGByk4i3vVXNGDl4onExcXQ6OZuLFy23O9IIlLKVHZSJpxxcj3WpKZwzukncHOHQQyeOFfnxhMpQ1R2UmbUqlGVN58ZzR3Nr+KRMbO4s+sw9uzJ8juWiJSCGL8DiJSm+Pg4nh7Xi1NPOIa+o57khw2bWDJ9ILVrVvM7moiUIK3ZSZljZvTpeDsLH+/Px19+T/2kZD77+ge/Y4lICVLZSZl10/WN+O/C8ezdm0PDFp1Z9uYqvyOJSAkJmbIzs25m9oWZfW5m880s3u9MEvnO+9dJrFmawkn1jqZp20cYN2OhDlwRiUAhUXZmdhTQGUh0zp0BRAO3+ptKyoqjDq/JiufH0eyai+j+2OO07z2OrKxsv2OJSDEKibLzxADlzSwGqADoPC1SaipWKM/zjz9Kn+TbeGL+Mhrf1Yut27b7HUtEiklIlJ1z7hdgNLAB2ARkOOf+8ZH1ZtbOzNLMLG3zZn30kxSvqKgohvRsw9PjevHe2i+4oFlHvv3hZ79jiUgxCImyM7OqQBJQDzgSqGhmdwRP55yb7pxLdM4l1qxZs7RjShlxZ4ureeuZ0WzbvpMGSR15890P/Y4kIocoJMoOuApY75zb7JzLBhYDDX3OJGXYReefwZrUFI46vAbX3vUw0+a96HckETkEoVJ2G4ALzKyCmRlwJfCVz5mkjKtb53BWLp7INZckcn+f8XQdmEJOTo7fsUTkIBS57CygqZmNNrNZZnasN36pmR15MCGcc6uBhcCHwGderukHc18ixanyYRVZOnMwXdvcxIQnF3Pjvf3Y/tdOv2OJSBFZUd5T5O1bexloAPwFVALOd859aGZzga3Ouc4lkjRIYmKiS0tLK41ZiQAwbd6LJD8ykVOOP4YXZw6m3jFH+B1JRIKY2VrnXGLweFHX7EYBdYCLgOqA5bntDQKbH0UiUvvbb+Q/T4/gl9/+oEGzjrz3wed+RxKRQipq2SUBfZ1z7wPBq4QbCBShSMS68uJzWfXCZKpUrsgVtz3E3MWv+x1JRAqhqGVXCfilgNvi+f9reiIR6eTj67DqhclcdN7p3NltOH1HziQ3N9fvWCKyH0Utu2+Aawq47VICB5eIRC2wO30AACAASURBVLxqVSrz6tPDaXvr9QxNeYZbOgxi567dfscSkQIU9Xx2U4DJZpYBPOONVTGz1kBHoF1xhhMJZXFxsUwf3p3TTjyWBwdPZf3Pv7F05mMcdbg+8EAk1BRpzc45Nx0YCwwEvvOGXyfwNoHxzrl5xRtPJLSZGd3atmTpzMf4dv1G6jdNZu1n3/odS0SCFPl9ds65XsDxQHugH9ABONk517eYs4mEjRuuvJD3Fk0gJiaaS1p2ZdHLK/yOJCJ5HNQnqDjnfnLOzXDODXXOTXPO6TTPUuadeerxrElN4axTj6PlAwMZOnmezo0nEiKKVHZm1trMBhRw2wAzu7tYUomEqdo1q/H2grHclnQlfUc9yd3dR5CZmeV3LJEyr6hrdl2ALQXclg50PbQ4IuEvPj6OuRN689iDrZmz+HWuaPUQ6X/86XcskTKtqGV3AvBFAbd9RWBfnkiZZ2b063wHz015lA8/X0eDpI58/s36Us+RsX0H69ZvJGP7jlKft0goKWrZ7QVqFHCbjrcWCXJzk0tZ8fw4MrOyadiiMy+/tbrU5r181Sc0ad2Hu7oNp0nrPqxY/WmpzVsk1BS17NYA9xdw2/3AB4cWRyTynH/WKaxZmsIJxx7JjW36MX7mohI/cCVj+w76jppJubhYalRLoFxcLH1GztAanpRZRS27IcAlZrbazO4zs+u9r6uBS4DHij+iSPg7+oia/HfheJpefSHdBk3hgb7jyc7eW2LzS9+yjZycXCqUjwegQvl49ubkkr5lW4nNUySUFfVN5cuBlkAtYBrwkve1JnCTc+6d4g4oEikqVijPoqkD6NWhFdPmvcR1d/fmz4y/SmRetapXITo6il279wCwa/ceYqKjqFW9SonMTyTUHcybylOdc/WAU4GLgVOcc8c555YWezqRCBMVFcWwh9sye0xPVqz5lAuadWTd+o3FPp+EypUY2rMtmVnZbN6aQWZWNkN7tiWhcqVin5dIOCjSyVtDiU7eKuHu3Q8+o3m7/uTk5LJoan8ub3hOsc8jY/sO0rdso1b1Kio6KRMKOnnrAcvOzO4Cljnntnjf75dz7umDj1l4KjuJBD9s+JUb7+3Ht+s3MmVwF+5r1cTvSCJh7VDKLhe4wDm3xvt+f5xzLvoQchaayk4iRcb2HdzacTCvLv+A7m1bMrJPO6KjS+XPSCTiFFR2hTnFTz1gU57vRaQYJVSuxItPDuHBwY8zdsZCvl2/kWcm9uWwShX8jiYSMQ54gIr3oc9ZZhYLnA1EeWP5Xko+skjkiYmJZsKAjkwZ3IVX3lnDRTd15qeNv/sdSyRiFPpoTOdcNvAcULfE0oiUcQ/c2ZRXnhrGhl/TqZ/UgffXFvTpfCJSFEV968EPBN5jJyIl5OpLElm1ZDKHVazA5a0eZN6SN/yOJBL2ilp2I4G+ZqbPwRQpQaeccAyrUydzwTmncUfXYTwyeha5uQc6PkxEClKYA1TyugKoBqw3s1UEDlzJezinc87pnHYixaB61QRemzOCB/qOZ/CkuXz9/QaeGvvw3x8BJiKFV9SyuwTIBjYTOJ1P8Cl9wvMd6iIhKi4ulhkjH+LUE46l57Dp/Ljxd1JnDOLI2gWdfERE8lPUzZiJwKnOuXoFXI4riZAiZZmZ8VD7W3jhiUF89d1P1G+azIeffet3LJGwcsCyM7NoMxtgZn8CvwPbzWyRmekTZUVKUdOrG/LeoolERUVxyc3dWPLqu35HEgkbhVmzux94FPgIGA2kAknAuBLMJSL5OOu041mTmsK/TqlHi/b9GT5lfomfG08kEhSm7O4DnnDOXeGce9g5dzOQDNxhZnElG09Egh1eqxpvLxhDq6ZX0HvEDO55cASZmVl+xxIJaYUpu+OA54PGngWigWOLPZGIHFD5+HLMm9iHgd3v5ulFr3PV7T3YrBOzihSoMGVXCdgeNLbvjJOHFW8cESksM+PRLnexYHI/0j79lgZJHfni2x/9jiUSkgp7NOZRZnbcvguBtb1/jHu3iUgp+veNl7P8uXHs3pNJwxadefWdNX5HEgk5hS27hcC6PJevvfEXgsbXFXdAETmw+mefwpqlKdSrczhNWvdl0qwlOnBFJI/CvKm8dYmnEJFDVufIWry7cAJ3dB1K5wGT+eq7DUwYkExsbFE/O0Ik8hzwr8A591RpBBGRQ1epYnkWTxtI7xEzGDn1Wdb9uJHnp/SnSkIlv6OJ+Kqon6AiEvEytu9g3fqNZGzf4XeUgxIVFcWI3u14clQPlq/+lAuad+S7H3/xO5aIr1R2InksX/UJTVr34a5uw2nSug8rVn/qd6SD1vqWxrwxbxR/bM2gQVIy77z/sd+RRHyjshPxZGzfQd9RMykXF0uNagmUi4ulz8gZYbuGB9CowZmsTk2hVvWqXH1HT2YueNnvSCK+UNmJeNK3bCMnJ/fvU+hUKB/P3pxc0sP8zdrHH3sk7y+ZxBUNz6Htw2PoMWQaOTk5fscSKVUqOxFPrepViI6OYtfuPQDs2r2HmOgoalUP/888r5JQiWWzhpJ8VxKjpz9H83b9+WvHLr9jiZQalZ2IJ6FyJYb2bEtmVjabt2aQmZXN0J5tSagcGUcyxsREM/mxzkwe1ImX317NxS27sOGX3/2OJVIqLFzfeJqYmOjS0tL8jiERKGP7DtK3bKNW9SoRU3TBXluRxs0dBlE+Po4Xpg/ignNP8zuSSLEws7XOucTgca3ZiQRJqFyJE+sdHbFFB3BNo0RWLZlExfLxXHZrd+anvuV3JJESpbITKaNOPfFYVqemUP+sU7it8xD6j52tjxiTiKWyEynDalRL4PW5I7nn5msZNGEOt3YczO49mX7HEil2KjuRMq5cuTieHNWDkb3b8fyy5Vz27+5s+n2L37FEilVIlJ2ZnWxmH+e5bDezrn7nEikrzIwe9/+bJdMH8vk3P1I/KZmPv/jO71gixSYkys45941z7mzn3NnAecAuYInPsUTKnKRrLuK9RRMAuLhlF1Jfe8/nRCLFIyTKLsiVwPfOuZ/8DiJSFp19+gmsSU3h9JPq0rxdf0ZOXaADVyTshWLZ3QrM9zuESFl2RO3qvPPsWG5ucikPD3uCNj1Gk5WV7XcskYMWUmVnZnFAU+D5Am5vZ2ZpZpa2efPm0g0nUsaUjy/Hgsn96N/1LmY9/ypX3d6DP7Zm+B1L5KCEVNkB1wEfOufy/Qwj59x051yicy6xZs2apRxNpOwxMwZ0u5tnJvZlzSdf0yApma/WaQ+DhJ9QK7tWaBOmSMhplXQF7ywYy87de7iwRSdeW6GP6pPwEjJlZ2YVgauBxX5nEZF/uuDc01iTmsKxR9Xm+nt6M3n2C35HEim0kCk759xO51x155x2CoiEqGOOqs27Cydw/eUN6NR/Eh0fmcjevTo3noS+kCk7EQkPh1WqwJLpA3mo3S2kPJ1Kk9Z92JYRvmdzl7JBZSciRRYdHc2ovu2ZMeJB3lr5ERc278T3P/3qdyyRAqnsROSgtbn1el6fO5L0LX/SICmZFas/9TuSSL5UdiJySC678GxWp6ZQo1oCV93eg1nPvep3JJF/UNmJyCE7oe5RvL9kEpc2OJN7e4zi4WHTyc3N9TuWyN9UdiJSLKomHMbLs4fxwB1NGTn1WVq078+Onbv9jiUCqOxEpBjFxsaQMrgzEwd05MU3VnFxyy78/Gu637FEVHYiUrzMjE6tm7Ns1hDW//wb9Zsms+bjr/2OJWWcyk5ESkTjy+rz/uKJlI8vx6W3dOPZF9/2O5KUYSo7ESkxp51Ul9Wpk0k88yRu7TiYgeOf1rnxxBcqOxEpUTWrV+GNeaO466arGTDuKW7vPJTdezL9jiVljMpOREpcuXJxzB7zMMMebsv8pW9x+a0P8lv6Vr9jSRmispNik7F9B+vWbyRjuz4nUf7JzOjVoRWLpw3ks6/XUz8pmU++/N7vWFJGqOykWCxf9QlNWvfhrm7DadK6jz42SgrUvPHFvLtwPLm5uVx0U2defGOl35GkDFDZySHL2L6DvqNmUi4ulhrVEigXF0ufkTO0hicFOueME1mzNIVTTziWpLaPMnraczpwRUqUyk4OWfqWbeTk5FKhfDwAFcrHszcnl/Qt23xOJqHsyNo1WP7cWFpe34geQ6fRtudosrKy/Y4lESrG7wAS/mpVr0J0dBS7du+hQvl4du3eQ0x0FLWqV/E7moS4CuXjWTC5H6ccX4fHJs7l+w2bWDS1P9WrJvgdTSKM1uzkkCVUrsTQnm3JzMpm89YMMrOyGdqzLQmVK/kdTcJAVFQUgx5szdzxvVn10Zc0SOrI199t8DuWRBgL1+3kiYmJLi0tze8YkkfG9h2kb9lGrepVVHRyUN5f+wXN2j1KZlY2Cx/vz1UXn+d3JAkzZrbWOZcYPK41Oyk2CZUrcWK9o1V0ctAuPO901qROoc4RtWh8Vy8en7PU70gSIVR2IhJSjj26NisXT6TxpefTod8EOvefzN69OX7HkjCnshORkHNYpQqkzniM7m1bMmn2Em64t6/eyiKHRGUnIiEpOjqaMY88wPTh3XnzvQ9p2KIzP2z41e9YEqZUdiIS0u5r1YTX5oxgU/pWGiR15L9r9Ok8UnQqOxEJeZc3PIfVqZOpVuUwrrytB08t/I/fkSTMqOxEJCycWO9oVr0wmUvO/xf3PDiS3iNmkJub63csCRMqOxEJG1UTDuPVp4fT/vYbGD5lPi3vH8jOXbv9jiVhQGUnImElNjaGx4d0ZXz/DqS+vpJLWnZl46bNfseSEKeyE5GwY2Z0ufcmXpw5mO9++pX6TZP54JOv/Y51SHQ+yJKlshORsHX9FQ1YuXgi5eJiaXRzN55fttzvSAdF54MseSo7EQlrZ5xcj9Wpkzn3jBO5pcMgBk+cG1bnxtP5IEuHyk5Ewl6tGlV585nR3NH8Kh4ZM4s7ugxjz54sv2MVis4HWTpUdiISEeLj43h6XC+G9LiXZ1Lf5PJbu/P75q1+xzqgvOeDBHQ+yBKishORiGFm9Ol4Owsf788nX/1A/aRkPvv6B79j7ZfOB1k6dD47EYlIaz/7lqZt+rF9xy7mT+rLDVde6Hek/dL5IIuHzmcnImXKef86iTVLUzj5uDo0bfMIY594PqQPXNH5IEuWyk5EItZRh9dkxfPjaNH4Yh4cPJX2vceRlZXtdyzxgcpORCJahfLxPDflUfok38YT85dx7Z0Ps3Xbdr9jSSlT2YlIxIuKimJIzzbMGdeLlR9+yQXNOvLtDz/7HUtKkcpORMqMO1pczVvPjGbb9p00SOrIm+9+6HckKSUqOxEpUy46/wzWpKZw1OE1uPauh5k270W/I0kpUNmJSJlTt87hrFw8kWsuSeT+PuPpOjCFnJwcv2NJCVLZiUiZVPmwiiydOZiubW5iwpOLufHefmz/a6ffsaSEqOxEpMyKiYlm3KMdmDq0K6+/u5aGLTqzfsMmv2NJCVDZiUiZ1/72G3n1qeH88tsf1E9K5r0PPvc7khQzlZ2ICHDlxeey6oXJVE2oxBW3PcScxa/7HUmKkcpORMRz8vF1WPXCZC4673Tu6jacPiNnkJub63csKQYqOxGRPKpVqcx/5ozgvlZNGJYyn5sfGMTOXbv9jiWHKGTKzsyqmNlCM/vazL4ys9D+iHIRiVixsTFMG9aNsY88wJL/vEujm7vxy2+b/Y4lhyBkyg6YALzqnDsFOAv4yuc8IlKGmRnd2rbkxZmD+Xb9Ruo3TWbtZ9/6HUsOUkiUnZklAI2AmQDOuSznnM5JLyK+a3LlBaxcPJHY2BguadmVRS+v8DuSHISQKDugHrAZmGVmH5nZDDOrGDyRmbUzszQzS9u8WZsURKR0/OuU41j9wmTOPu14Wj4wkCGT5oX0ufHkn0Kl7GKAc4HHnXPnADuBXsETOeemO+cSnXOJNWvWLO2MIlKG1a5Zjbfmj+H2ZlfSb/ST3NVtOJmZWX7HkkIKlbLbCGx0zq32ri8kUH4iIiEjPj6OOeN789iDrZm75A2uaPUQ6X/86XcsKYSQKDvn3G/Az2Z2sjd0JfClj5FERPJlZvTrfAfPTXmUj774jgZJHfn8m/V+x5IDCImy83QC5pnZp8DZwFCf84iI/EPG9h2sW7+Ray45jxXPjyMzK5uGLTrz8lurD/zD4puQKTvn3Mfe/rgznXPNnHPaNiAiIWX5qk9o0roPd3UbTpPWfdi1O5M1S1M44dgjubFNP8bPXKQDV0JUyJSdiEgoy9i+g76jZlIuLpYa1RIoFxdLn5EzOKxief67cDxJVzek26Ap3N9nHNnZe/2OK0FUdiIihZC+ZRs5OblUKB8PQIXy8ezNySV9yzYqVijPwqn96Z3ciunPLKPxXb34M+MvnxNLXio7EZFCqFW9CtHRUezavQeAXbv3EBMdRa3qVQCIiopiaM+2zB7Tk/9+8BkXNOvIuvUb/Yzsm337NTO27/A7yt9UdiIihZBQuRJDe7YlMyubzVszyMzKZmjPtiRUrvT/pru75bW8NX80W7f9RYOkjrz13kc+JfZH8H7NFas/9TsSABauO1MTExNdWlqa3zFEpIzJ2L6D9C3bqFW9yj+KLq8fNvzKjff249v1G5kyuAv3tWpSiin9kbF9B01a96FcXCwVyseza/ceMrOyWTZr6H6XVXEys7XOucTgca3ZiYgUQULlSpxY7+gD/vM+7pgjWbl4IldddC7teo2l+6Ap5OTklFJKf+xvv6bfVHYiIgdwsPugEipX4sUnh9C5dXPGzVxEUttH2P7XzhJK6b8D7df0k8pORGQ/DnUfVExMNBMGdGTK4C68uvwDLrqpCz/+/FsJpfVXYfdr+kH77EREClDc+6Be/28aN3cYRLm4WJZMG0TDxNNLILX/CrtfsyRon52ISBEV9z6oqy9JZNWSyRxWsQKXt3qQeUveKM64IaOw+zVLk8pORKQAJbEP6pQTjmF16mQuPPc07ug6jEdGzyI3N7e4IksBVHYiIgUoqX1Q1asm8NqcEbT593UMnjSXfyc/9nehSsnQPjsRkQMoqX1QzjnGPvE8PYZO57x/nUTqjEEcWbtGsd1/WaR9diIiB6mk9kGZGQ+2u4XUGYP46rufqN80mQ8/+7ZY5yEBKjsREZ/deFVD3ls0kaioKC65uRuLX/mv35EijspORCQEnHXa8axJTeFfp9TjpvsHMHzKfJ0brxip7EREQsThtarx9oIxtGp6Bb1HzOCeB0eQmZnld6yIEON3ABER+Z/y8eWYN7EPp5xQh/5jn+L7nzaxZPpAaobAR26FM63ZiYiEGDPj0S538WzKI6z97FsaJHXki29/9DtWWFPZiYiEqFtuuIzlz41j955MGrbozKvvrPE7UthS2YmIhLD6Z5/CmqUpHFfnCJq07svEWYt14MpBUNmJiIS4OkfW4r8Lx3PjVRfQZUAKHfpNIDt7r9+xworKTkQkDFSqWJ7F0wbS8/5/M3Xui1x/T2/+zPjL71hhQ2UnIhImoqKiGNG7HbNG92D56k+5sHknvvvxF79jhQWVnYhImLnn5sa8MW8Uf2zNoEFSMu+8/7HfkUKeyk5EJAw1anAmq1NTqF2jKlff0ZOZC172O1JIU9mJiISp4489kveXTOKKhufQ9uExPDR4Kjk5OX7HCkkqOxGRMJZQuRLLZg2l493NGPPE8zRv15+/duzyO1bIUdmJiIS5mJhoJg3qxORBnXj57dVc3LILP2383e9YIUVlJyISIZLvbsbLs4fx48bfqZ/UgVUfful3pJChshMRiSDXNEpk1ZJJVKpQnstu7c781Lf8jhQSVHYiIhHm1BOPZXVqCg3OPpXbOg+h/9jZ5Obm+h3LVyo7EZEIVKNaAq/PHUnrmxszaMIcWnUawu49mX7H8o3KTkQkQsXFxTJz1EOM7N2O55ct59JburHp9y1+x/KFyk5EJIKZGT3u/zdLpg/ky3U/UT8pmY8+X+d3rFKnshMRKQOSrrmIdxdOAODill154T/v+pyodKnsRETKiLNPP4E1qSmccXJdWrQfwMipC8rMufFUdiIiZcgRtavzzrNjueWGS3l42BPc22MUWVnZfscqcTF+BxARkdJVPr4c8yf145Tjj2Hg+Kf5/qdfWTxtIDWqJfgdrcRozU5EpAwyMwZ0u5v5k/qy5pOvaZCUzJff/uh3rBKjshMRKcNubXoFy58dx87de7iwRWf+s/wDvyOVCJWdiEgZ1+CcU1mTmkLdo2vTpHUfJs9+we9IxU5lJyIiHHNUbd5dOIHrL29Ap/6TSO43gb17I+fceCo7EREB4LBKFVgyfSAPtbuFKXOW0qR1H7Zl7PA7VrFQ2YmIyN+io6MZ1bc9M0Y8yFsrP+LC5p34/qdf/Y51yFR2IiLyD21uvZ435o0ifcufNEhKZsXqT/2OdEhUdiIikq9LLziL1akp1KiWwFW392DWc6/6HemghUzZmdmPZvaZmX1sZml+5xERETih7lG8v2QSlzY4k3t7jKLn0Gnk5ITfgSshU3aey51zZzvnEv0OIiIiAVUTDuPl2cPocGdTRk17jhbtB7Bj526/YxVJqJWdiIiEoNjYGFIGd2HSwE689OYqLm7ZhZ9/Tfc7VqGFUtk54DUzW2tm7fwOIyISTjK272Dd+o1kbC/Ztwp0vKcZy2YNYf3Pv1G/aTJrPv66ROdXXEKp7C52zp0LXAckm1mj4AnMrJ2ZpZlZ2ubNm0s/oYhICFq+6hOatO7DXd2G06R1nxI/crLxZfV5f/FEyseX49JburFg6VslOr/iEDJl55z7xfuaDiwB6uczzXTnXKJzLrFmzZqlHVFEJORkbN9B31EzKRcXS41qCZSLi6XPyBklvoZ32kl1WZ06mcQzT6JVpyEMHP90SJ8bLyTKzswqmtlh+74HrgE+9zeViEjoS9+yjZycXCqUjwegQvl49ubkkr5lW4nPu2b1KrwxbxR3t7yGAeOe4rbOQ9i9J7PE53swQuV8drWBJWYGgUzPOOfC9w0dIiKlpFb1KkRHR7Fr9x4qlI9n1+49xERHUat6lVKZf7lyccwa3ZNTTziG3iNmsv7n33hh+iAOr1WtVOZfWCGxZuec+8E5d5Z3Od05N8TvTCIi4SChciWG9mxLZlY2m7dmkJmVzdCebUmoXKnUMpgZDz/QikVTB/DZ1+upn5TMJ19+X2rzLwwL5W2s+5OYmOjS0vTecxERCOy7S9+yjVrVq5Rq0QX76PN13NimH9u27+CZiX1penXDUp2/ma3N773aIbFmJyIihyahciVOrHe0r0UHcM4ZJ7JmaQqnnnAsze57lNHTnguJA1dUdiIiUqyOrF2D5c+NpeX1jegxdBpte44mKyvb10yhcoCKiIhEkArl41kwuR+nHF+HxybO5fsNm1g0tT/Vqyb4kkdrdiIiUiKioqIY9GBr5o7vzaqPvqRBUke+/m6DP1l8mauIiJQZtze/irfnj+Gvnbu4oHlHXv9v6R9cqLITEZESd+F5p7MmdQrHHFmL6+7uzZSnU0t1/io7EREpFcceXZv3Fk2k8aXnk/zIRDr3n8zevaVzbjyVnYiIFEpxnFnhsEoVSJ3xGN3btmTS7CXccG/fEv8cT1DZiYhIIRTnmRWio6MZ88gDPDG8O2++9yEXNu/EDxt+Lca0/6SyExGR/SqpMyu0bdWE1+aM4LfNfzL2iYXFlDZ/ep+diIjsV35nVti5O5P0LdsO+RNbLm94DmkvTeHIWjWKI2qBtGYnIiL7lffMCkCxn1nhuGOOJD4+rljuqyAqOxER2a9QOLPCodJmTBGRMFTaZzlo1OBMls0aWiLzLI3HorITEQkzy1d9Qt9RM8nJySU6OoqhPdvSqMGZJT7fhMqVir2MSuuxaDOmiEgYKakjI/1Qmo9FZSciEkbyOzJyb04u6Vu2+Zys6ErzsajsRETCSEkfGVmaSvOxqOxERMJIJBwZuU9pPhYLhdOlH4zExESXllb6p4kQEQkFpX00ZkkqzsdiZmudc4nB4zoaU0QkDJXEkZF+KY3Hos2YIiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8VR2IiIS8cL2FD9mthn4qQg/UgP4o4TiRAItn/3T8tk/LZ/90/IpWHEvm2OdczWDB8O27IrKzNLyO8eRBGj57J+Wz/5p+eyflk/BSmvZaDOmiIhEPJWdiIhEvLJUdtP9DhDitHz2T8tn/7R89k/Lp2ClsmzKzD47EREpu8rSmp2IiJRRKjsREYl4YVV2ZvakmaWb2ed5xgaY2S9m9rF3uT7Pbb3N7Dsz+8bMrs0z3tgb+87MeuUZr2dmq73xZ80srvQe3aEzszpm9raZfWlmX5hZF2+8mpm9bmbrvK9VvXEzs4ne4/3UzM7Nc193e9OvM7O784yfZ2afeT8z0cys9B/pwdnP8tFzCDCzeDNbY2afeMtnoDee72Mys3Le9e+82+vmua8iLbdwsJ/lM9vM1ud5/pztjZepvy8AM4s2s4/M7CXveug8d5xzYXMBGgHnAp/nGRsAPJTPtKcBnwDlgHrA90C0d/keOA6I86Y5zfuZ54Bbve+nAg/4/ZiLuHyOAM71vj8M+NZbDiOBXt54L2CE9/31wCuAARcAq73xasAP3teq3vdVvdvWeNOa97PX+f24i2H56DkUyGtAJe/7WGC197vO9zEBHYCp3ve3As8e7HILh8t+ls9soGU+05epvy8vf3fgGeAl73rIPHfCas3OObcC2FrIyZOABc65TOfceuA7oL53+c4594NzLgtYACR5r6CuABZ6P/8U0KxYH0AJc85tcs596H3/F/AVcBSBZfGUN1nex5UEPO0CVgFVzOwI4FrgdefcVufcn8DrQGPvtsrOuVUu8Mx8mjBaRvtZPgUpU88h73mww7sa610cBT+mvM+rhcCV3jIoOu0G2AAABx1JREFU0nIr4YdVbPazfApSpv6+zOxooAkww7u+v7+HUn/uhFXZ7UdHbzPBk+ZtoiPwT+znPNNs9MYKGq8ObHPO7Q0aD0veZoFzCLz6rO2c2+Td9BtQ2/u+qMvoKO/74PGwE7R8QM8h4O/NUB8D6QT+CX9PwY/p7+Xg3Z5BYBkUdbmFjeDl45zb9/wZ4j1/xplZOW+srP19jQd6Arne9f39PZT6cycSyu5x4HjgbGATMMbfOP4zs0rAIqCrc2573tu8V4xl+v0m+SwfPYc8zrkc59zZwNEEXk2f4nOkkBK8fMzsDKA3geV0PoFNkw/7GNEXZnYDkO6cW+t3loKEfdk55373noC5wBME/kABfgHq5Jn0aG+soPEtBDYzxASNhxUziyXwj3yec26xN/y7t4kE72u6N17UZfSL933weNjIb/noOfRPzrltwNvAhRT8mP5eDt7tCQSWQVGXW9jJs3wae5vHnXMuE5jF/7V3byFWVXEcx78/M7KCsMTCiEp76KELJb1ERpPWQE1GPRmE4I2KqQgpipKyIsMSwiCliR66DN2EAssukKEGGVYkzqBdxKagLMSCxLx0WT381zR7ds6ZmXNm5swcfx/YnHP2XmfvtdfsM3/2WmuvVf31M5Z/X5cB10vqIqoYZwJPM5qunZFquByqBTib3h1UphTeLybqewHOo3dD5y6ikXN8fj+VnobO8/J31tC7MbW13uc7yLIRUc+/srR+Bb07qDyZ37fQuwF9S15/CvAd0Xh+cn5/St5WbkC/tt7nPQTl42so8jsZmJjfHw98DFzX1zkBt9O7k8Eb1ZbbWFgqlM+UwvW1EliePx9Vv69COTXR00Fl1Fw7dS+YQRbiq0Q1059Ene1C4GWgA9gGrC3941pCtDl8TaFXE9FL6pu8bUlh/bR8se3Mf6Tj6n3OgyyfGUQV5TZga16uJerC1wPfAh8WflgCVuVy6AAuKexrQS6HncD8wvpLgM78nWfIo/CMhaVC+fgairxfCHyZy6ETeKjSOQET8uedefu0asttLCwVyuejfP10Au309Ng8qn5fhXNooifYjZprx8OFmZlZwxvzbXZmZmb9cbAzM7OG52BnZmYNz8HOzMwanoOdmZk1PAc7syEgqVnSe5L2SjqYR2dfLmlivfMGIGmepAV9rE+lUecfljRzJPNnNtwc7MxqJOkB4APgILCIGOi3DZgPbJE0GsY3nEc821W2jhglZXdh3VJiBAyzhjG+/yRm1hdJVwKPEaOyLC5s2ijpLeALYgip5nrkrz8ppT3Annrnw2y4+c7OrDb3EtNO3V/ekGKKkuXA1ZKmSzo7VxnOK6aT1JTXNxXWNUt6V9JuSX9I6pR0t6RjSt/tktQu6SZJOyTtl/S5pBmFNBuAK4DL8nFSXve/akxJ3aNMLCmkfTgf+5CkyaXjS9IuSa9VVXpmI8TBzqxKeQDbK4ipXg72kWxtfr1qkLufRgzxtoAYY/FFYpLZZUdIezlwN/AgMIcYS/CdQnthKz3DXF2al9Y+jntpfn2hkPZ54u70H6JqtqiZGK/w2UGcm9mIczWmWfUmEQMCd1VI073trMHsOKX0X/DIk1p+TAyAe4+kB1LM0NDtJOCiFBOBIuln4DNiLMFXUkrbJf0OjE8xiWil434ah+PHclpJrwO3SFqResYZvBX4KqW0YTDnZzbSfGdnNjL+6T9JD0lTJLVJ+h44TAx+/hgwETi1lHxzd6DLOvLrmdVmtg+riXn/ZnXnEZgNPDfExzEbcg52ZtXbCxwgpp3qS/e2Ac+9JWkcUf15HRHgZhITg3ZXYU4ofeXX4ocU86odKV1NUkpbiA43t+VVi4C/iCpWs1HN1ZhmVUop/SVpE9EBZUIf7XbX59eNxKMJENWRRZNKn88hpnqZm1Jq714pafYQZLtWq4G2/DjFImBNSunXfr5jVne+szOrzQoiWD1e3iBpKnAfsDWltBn4BTgEnF9K2lL6fEJ+/bOwr2OBm2vI5yGifXEgDldI+yqwD3iFqCZ1xxQbE3xnZ1aDlNJ6SUuBR3L3/ZeA34DpxKzw44iZmEkppdzJY6Gkb4jJKVuIyS6LdgDfA8sk/U0EvcXUZjvQKmkOMfnlvpTS1xXStkh6P5/LTymln/I5HJD0Qs5PR0rpkxrzZTYifGdnVqOU0qPANcCJRBf9DcBTwA/ABaWgchfwJvEYwetEu9qdpf0dBm4AfiaC5ypgE/HMXrWeIB5leJ7oqdlWIe0dwH7g7Zz2ltL2Nfm10j7MRhXPVG42DCS1AzcCs/rr7j/WSFpGBO3TU0q/1zs/ZgPhakyz4bEAOANYJ2lGSmlHvTNUK0kXA+cSge45BzobS3xnZ2YDIqkLOI0Y9HpuSmlffXNkNnAOdmZm1vDcQcXMzBqeg52ZmTU8BzszM2t4DnZmZtbwHOzMzKzh/QvjawO2/DatPAAAAABJRU5ErkJggg==\n", "text/plain": [ "